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Abstract

Consider the lifelengths T 1,...,Tk of k components subjected to a randomly
varying environment. They are dependent on each other because of their com-
mon dependence on the environment. The parameters of the model are the
distribution of the random process which describes the environment and a set
of rate functions which determine the probability law of TI.... , Tk as a function
of the distribution of the environment. We find conditions on the parameters of
the model which imply that T 1 ,...,Tk are associated. Other conditions which
imply that T 1 ,...,Tk have the multivariat, . aging properties IHR (increasing
hazard rate) and NBU (new better than used) are also described. Also two such
models are compared. In particular, we characterize the parameters of these
models so that stochastic ordering between the two vectors of resulting lifetimes
can be obtained.
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1. INTRODUCTION

Consider the lifelengths T1,...,Tk of k components subjected to a randomly

varying environment. They are dependent on each other because nf th'r co=-

mon dependence on the environment. In the model introduced by Qinlar and

Ozekici (1987) to handle such dependence, the cumulative hazard functions of

the components are made functionals of the environment process and jointly

satisfy a differential equation. Therefore, the joint probability law of the life-

lengths is specified by the probability law of the environment process X and

the intrinsic aging rates ri(z,a1,..., ak), i E {1,..., k}, where the latter stands

for the instantaneous failure rate of the component i at an instant when the

environmental state is x and the intrinsic ages (the cumulative hazards) of the

components 1,...,k are a,,.. ,ak respectively. We shall make these precise

shortly, in Section 2.

Our aim is to explore the dependence of the lifelengths on the function

r = (r1,...,rk) and the process X. In Section 3, we examine the effects of

replacing r and X by another function f and another process X, in both cases

seeking results on stochastic dominance. Also in that section is a characteriza-

tion of "association" (in the sense of Esary, Proschan and Walkup (1967)) for

the lifelengths in terms of the association of the process X.

In Section 4, we consider multivariate aging properties of the lifelengths con-

ditioned upon the history Yt of the environment until t, and also, conditioned

upon the history gt of the environment and failures during [0,t]. In particu-

lar, we obtain conditions for the lifelengths to have the "multivariate increasing

hazard rate" property with respect to the filtration (T t) or (gt), and also the

"multivariate new better than used" property, again with respect to (x) or (gt).
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2. PRELIMINARIES

In this section we give an overview of the model introduced by (inlar and

Ozekici (1987). Throughout here and the paper, (f0, ), P) is a complete proba-

bility space. We write R+ for [0, cc), call a number or vector a positive [negative)
if a 01a < 0, and call a function f increasing [decreasing] if f(x) S f(y) for

x < yIx > y].

Let (E, S) be a measurable space. Elements of E are called the environmental

states. We suppose that, for each x E E, the singleton {x} belongs to e. There

is a distinguished point in E, denoted by 6, which stands for the state that

causes no aging. We let X = {X(t);t E R+} be a stochastic process with state

space (E, f); it represents the environment process.

The set of all components is epresented by K = {1,...,k}. We let A

{A(t); t E R+} be an increasing continuous process taking values in Rk; its ith

component, namely Aj = {A,(t);t c R+}, is called the intrinsic age process of

component i, it plays the role of a random cumulative hazard function.

We let S1,... , Sk be independent of X and of each other and have the standard

exponential distribution (with mean 1). The lifelength of component i is modeled

by

(2.1) T, = inf{t : Ai(t) > S,}, i E K,

that is, the component i fails when its intrinsic age runs over its "intrinsic

lifelength" Si. We write S = (SI,... ,Sk) and T = T 1,.. . , Tk) for the vectors

of intrinsic lifelengths and lifelengths.

In this formulation, the dependencies between the lifelengths and their joint

dependence on the environment are reflected via the intrinsic age process A.
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Regarding the latter, the main assumption of Qinlar and Oekici (1987) is as

follows.

(2.2) HYPOTHESES. (i) For each component i there exists a positive measur-

able function ri on E x Rk such that

(2.3) dAi(t) = rj(X(t),A(t))dt, t > 0, i E K.

(ii) We have ri(x,a) > 0 for each i E K, a G Rk, and all x E E except r6.

For x = 6, we have r,(x,a) = 0 for all i and a.

The basic hypothesis is the first one: the intrinsic age process A is a functional

of the environment process X. The second hypothesis is a regularity condition, it

is meant to ensure that (2.3) has a unique solutic A for each starting condition;

in particular, it singles out 6 as the only state that causes no aging.

Note that A is determined by X and, hence, is independent of the vector

S. Therefore, it follows from (2.1) and the independence of the exponential

variables Si from each other that

(2.4) P{T > tIX} = exp [ Ai(t] ' t C R',.

This justifies the term "random cumulative hazard function" for each Ai. How-

ever, we prefer to call Ai the intrinsic age process of i. Then (2.1) can be read as

follows: each component is endowed with an intrinsic lifelength, the component

ages in response to the environmental factors in a manner intrinsic to its own

function and nature, it fails when its intrinsic age runs over its allotted intrinsic

lifelength. In particular, (2.3) defines ri(x,al,..., ak) to be the intrinsic aging

rate of the component i at a time when the environment is in state x and the
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intrinsic ages of the components 1,..., k are a 1 ,..., ak respectively. It follows

from (2.3) and (2.4) that we also have

(2.5) r1 (x;aj,. . .,ak)

1 _

=im -P{T < t T, > tX(t)= x,A 1 (t) =al,...,Ak(t) =ak}
u O U

that is, ri(x,a) is the hazard rate for component i as a function of the environ-

mental state x and the intrinsic age vector a. We write r = (rl,..., rk) and call

it the intrinsic aging rate function. Aside from the probability law of X, it is

the only parameter in the model.

If r(x,a) is free of x, then A becomes deterministic and (2.1) shows that

T1 .... ,Tk are independent. If r(x, a) is free of a, then A becomes a k-dimensional

additive functional of X.

A function r from ExRk into R k will be called an intrinsic aging rate function

if it satisfies Hypothesis (ii) of (2.2). Given such a function r and the process

X, the differential equation (2.3) together with

(2.6) A(O) =0

specifics the aging vector A(t) for all t > 0, and the latter specifies the lifelength

vector T via (2.1) from intrinsic lifelength vector S of standard exponentials.

Thus, there exists a functional L such that

(2.7) T= L(X, r, S).

The functional L is defined implicitly via (2.1) and (2.3); it is called the lifelength

functional. This paper is a study of the dependence of L on its arguments X

and r.



5

3. DEPENDENCL ON ENVIRONMENT AND AGING RATES

In this section we discuss the dependence of the lifelength vector T -

L(X, r, S) on the environment process X and the intrinsic aging rate function r.

Here, and for the remainder of the section, we assume that the state space E is

a complete separable metric space.

(3.1) THE?)REM. Let r and ; be intrinsic aging rate functions and let T=

L(X,r,S) and.T L(X,9,S). Assume that t - X(t) is piecewise continuous

and that either r or f is continuous on E x Rh. Suppose that, for each i E K

and x E E,

(3.2) a,a E Rka > a, a = ai =€, r, za) _(,

Then, T < 7.

(3.3) REMARK. Suppose that r > f and that either a --- r(x,a) or a --

f(x,a) is increasing for every x. Then, the condition (3.2) of the preceding

theorem is satisfied and T K 7<. For instance, if r > f and a -+ r(x, a) is

increasing for each x, then r(x,a) >_ r(x,a) > f(x,ti) for all a > h, and hence

(3.2) holds.

(3.4) REMARK. Suppose that r and f are as in the preceding theorem and

(3.2) is satisfied. Suppose that T = L(X,r,S) and f = L(,fS) where X and

X" have the same probability law, and so do S and S, and S is independent

of k (as S is of X). Then, the conclusion of the preceding theorem is that T

is dominated by t stochastically, that is, Ef(T) <_ Ef(t) for every increasing

function f from Rk into R+.

Proof of Theorem (3.1). Fix r and 4 . Suppose first that (3.2) holds with a

strict inequality: ri(x, a) > F,(x, &). Let A be the solution of (2.3) and let A be
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the solution of (2.3) with f replacing r, both with A(0) A(0) = 0. Now, T is

defined by (2.1), and t is defined by (2.1) with A replacing A. Thus, to show

that T < TP, it is sufficient to show that A > A. Or, equivalently, it is sufficient

to show that the random variable

(3.5) r = inf{t : Ai(t) < Ai(t) for some i}

is equal to +oo identically.

Since A(O) = A(O) = 0, we have r > 0. Suppose for the moment that r(w) = t

(where t < oc) for some outcome w E fl. Fix that w and simplify the notation

by putting

(3.6) x = Xt (w),a = A(w,t), =A (w,t).

In view of (2.3), the proccsses A and A are continuous, and the assumed

finiteness of t = r (w) implies the existence of Z* E K and of a decreasing sequence

(t,,) c R+ with limit t such that

(3.7) Ai(w,t.) < i(w,t,) for all n.

Moreover, by the continuity of A and A, we must have

(3.8) a > a, a, = ai

The differentiability of Ai and Ai ensured by (2 3) implies that, since a1  ai,

lm 1 [A 1(wtn) -
nmo t, - t

(3.9) = lim [Ai(w,tn) - ail - lim 1[A(wt.) - (Lj
n -oo t n  t n-oo t n  t

r(x,a)- ).



In view of (3.8) and the assumed strictness in condition (3.2), this is strictly

positive. But, the first membcr of (3.9) must be negative in view of (3.7). This

contradiction shows that r(') cannot be finite.

Now relax the assumption of strictness in (3.2) but assume for a moment

that t -* X(t) is continuous. Then t - r(X(t),A(t)) or t --* (X(t),A(t))

is continuous by the hypothesis that either r or is continuous. Suppose the

former. Fix an c > 0 in f0, OC)k and define r (') z r+E/n,n = 1,2,..... Let A( ' )

be the solution of (2.3) with r (' ) replacing r and with A(')(0) = 0. Then by

the previous argument A (' ) > A. By the continuity of r, A (' ) --. A. Therefore

A > A in this case.

The proof for the case. in which t -- (X(t),A(t)) Irather than t

r(z(t),A(t)! is continuous, is similar. The above argument can be used except

that F is replaced by i ( ' ) = f(1 - E/n) where e < 1 is fixed. This definition of

(n) ensures that ('J > 0 as required in (2.2) (ii).

If t -- X(t) is piecewise continuous, the;i Ict tl,t 2 ... be the successive iump

times of X. On each interval Ij,tj+i), X is continuous and the previous argu-

ment can be applied to each such interval to show that A > A. 11

Dependence on environment

For the remainder of this section, we assume that the state space E is a

partially ordered Polish space (a complete separable metric space with a closed

partial ordering). Thcn, the space D = D(R+, E) of right-continuous left-limited

functions from R4 into E is again a partially ordered Polish space. A functional

g : D --* R+ is said to be increasing if w < tb implies g(w) <_ g(tb) for all paths

tw, t E D, where < denotes the partial ordering.



Let X and N be processes with paths in D. Then, X is said to dominate N7

stochastically provided that

(3.10) Eg(X) __ Eg(X)

for every Borel measurable increasing functional g on D. This is obviously tile

case if X(.,',t) > X(-,.t) for all L C fl and t G R+. More generally, if X

stochastically deminates N, then it follows from Theorem 1 of Kamae, Krengel,

and O'Brien (1977) that X and N can be "put on the same probability space

so that one dominates the other path by path". More precisely, it is possible to

construct a new probability space (W, C,Q) and stochastic processes Y and 1'

defined on (11'. , Q) and having paths in D such that Y(w, t) > Y(w, t) for all

w e W and I E 1-,, X and Y have the same probability law, and X and Y have

the same probability law. Of course, the new probability space can be enlarged

to accommodate k independent standard exponential variables independent of

Y and 1'. These remarks will be useful in simplifying the proof of the following

theorem, which reduces to Theorem (3.1) when X = N.

Let b = b(R-, E) be the set of functions in D(R+, E) which are piecewise

continuous.

(3.11) THEOREM. Let X and XC be processes with paths in D, let r and F

be intrinsic aging rats- functions, and let S and S be k-vectors of independent

standard exponential variables independent of X and XC respectively. Assume

that r and f are continuous on E x R+. Suppose that

i) X dominates X stochastically,

ii) x -+ r(x, a) is increasing for every a (or x - F(x, a) is increasing for every

a), and the condition (3.2) holds for every i E K and X E E.
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Then. T = L(X,r, S) is stochastically dominated by T L(,S).

Pronf. in view of the foregoing remarks. by moving onto a new probability

space if necessary, we may and do assume that S S and X(a, t) > X(c, t) for

all ., aTd t.

Let A be as before, and define A as the slution of (2.3) with X and r replaced

by X and i, A(O) = A(0) = 0. As in the proof of Theorem (3.1), it is sufficient

to show that A > A, or equivalently, that r defined by (3.5) is equal to -4-oc

identically.

First assume that (3.2) holds with a strict inequality. Let r be defined by

(3.5) and suppose again that r() t(t < oc) for some w C Q. Pick i G K and

(t,) c R- so that (t,) decreases to t and (3.7) holds. With the notations (3.6)

supplemented by i = (',t), (3.9) becomes

(3.12) 1rn -[A 1(wt) - A((,t (,), t = ri(z, a) - ii (1, h).
n-oo - t

Since X dominates k, we have x X(w,t) > :X(wt) = i. Thus, the condition

(ii) implies that

if x - r(xa) is increasing (and ri(x,a) > f 1(x,a) _ , if x - i(x,a) is

increasing). It follows that the right s;de of (3.12) is strictly positive. But from

(3.7) it is seen that it is negative. Hence r(w) cannot be finite.

The extension of the above argument to the case in which strictness in (3.2)

is not assumed can be done as in Theorem (3.1). II

The preceding proof, with r 9, yields the following technical result regarding

the lifelength functional L.
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(3.13) COROLLARY. Suppose that a -- r(x, a) is increasing for every z G

E, that x -- r(z, a) is increasing (respectively, decreasing) for every a G R_ and

that r is continuous on ExR. Then, w --- L(w, r, s), is decreasing (respectively,

increasing) in w E D for fixed r and s.

4. ASSOCIATION OF LIFELENGTHS

Let Zi,.. . Zm be random variables taking values in R ' . Then, they are said

to be associated provided that the vector Z = (Z 1,... , Z,) satisfy

Cov(g(Z),h(Z)) 0

for all increasing functions g, h : R -
' +

* R for which the covariance exists.

A stochastic process Z = {Z(t);t G R+} with state space Rn is said to bc

associated in ti,.- if Z(t),...,Z(tm) are associated for all integers rn > 1

and times tl,.. . ,t, E R+. Our aim in this section is to show that, if the

environment process X is associated in time and certain conditions hold for the

aging rate function r, then the lifelengths T,...,Tk are associated. We refer

to Esary, Proschan, and Walkup (1967), Barlow and Proschan (1975), Arias

and Norros (1984), Shaked and Shanthikumar (1987) and references therein for

the usefulness of the concept of association for lifelengths, and to Barlow and

Proschan (1976) and Harris (1977) for examples of processes associated in time.

For the purposes of this section we assume that the environment process X

takes values in E = R' and its paths belong to 1 as in'the preceding section.

(4.1) THEOREM. Suppose that X is associated in time. If x -* r(x,a) is

increasing for every a E R_ (or decreasing for every a E R+), a -- r(z,a) is

increasing for every x E E = R', and r is continuous on E x Rk, then the

lifelengths T 1,.. .,Tk are associated.
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Proof. Fix r, suppose that r(z,a) is increasing in both x and a. Then, by

Corollary (3.13), the mapping w - L(w,r,s) from b into R+ is decreasing.

Thus. if g and h are increasing functions from Rk into R, then -g o L(w, r, s)

and -h o L(w, r, s) are increasing functions of w E b and we have

(4.2) EgoL(X,r,s)hoL(X,r,s) >_ EgoL(X,r,s)EhoL(X,r,s)

by the assumption that X is associated in time. The same is true for the case

where x ---* r(x, a) is decreasing, by Corollary (3.13) and the association applied

directly to g o L and h o L.

Let p denote the k-dimensional standard exponential (that is, the distribution

of S). By the independence of X and S, the integral of the left side of (4.2)

with respect to 1 i(ds) is equal to Eg(T)h(T). Thus, (4.2) gives,

(4.3) Eg(T)h(T) f J k(ds)Eg o L(X, r, s)Eh o L(X, r, s).

On the other hand, it is obvious that s -- L(w, r, s) is increasing, which implies

that s - Ego L(X, r, s) and s -+ Eh o L(X, r, s) are increasing. Since S 1 , ... ,Sk

are independent, they are associated. This in turn implies that the right-side of

(4.3) is greater than or equal to

J 1L(ds)Eg o L(X,r,s) f p (ds')Eho L(X,r,s')

= Eg o L(X, r, S)Eh o L(X,r, S) = Eg(T)Eh(T).

This completes the proof. 11

In the preceding theorem, the condition that X be associated in time is satis-

fied for processes X that have independent positive increments (e.g. increasing

compound Poisson processes, gamma processes, etc.). More generally, in the
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case of real-valued processes X, association in time holds if X is stochastically

monotone, that is, if

(4.4) E'g(X(t))!X(o) =: < E[g(X(t))jX(O) = y]

for x < y and g increasing Borel measurable (see Barlow and Proschan (1976)

and Harris (1977) for this). Thus, the preceding theorem remains true if X is a

real valued, stochastically monotone Markov process.

5. MULTIVARIATE AGING PROPERTIES

In this section Ot will denote an operator that shifts the time origin to t. In

particular,

(5.1) OtTi = max(0, T - t), i _ K.

The following properties were defined in Arjas (1981).

(5.2) DEFINITION. Let (Mt) be a filtration. The lifelength vector T is said

to have a multivariate increasing hazard rate with respect to (lt) (abbreviated

as (Mt)-MIHIR) if

(5.3) E[f(OtT) I Mt] > E[f(OuT) I Ml

for all t < u and all positive increasing Borel functions f on Rh. It is said to have

the multivariate new better than used property with r'!spect to (Mlt) (abbreviated

as (Nt)-MNBU) if

(5.4) Efc(T) I el B E[fn(OtT) ot)

for all t > 0 and all positive increasing Borel functions f on R+.
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Two special filtrations of interest to serve as (; t) above are defined by

Y5. ) = C(,.1(0), X (s) : s < t),

(5.6) t V e (I(T,<5, :s < t, i E K),

which are, respectively, the history of environment and age processes until t and

the complete history of environment, ages, and failures until t. Note that we

allow the initial ages Aj(O) to be non-zero random variables.

Our aim in this section is to discuss MIIR and MNBU properties of T with

respect to (Y7) and (,9 t) assuming that X is a Markov process with certain

properties. We start by some computations in the Markovian case.

Lifelengths in a Markovian environment

Let X be a temporally homogeneous Markov process with state space E = R'.

Suppose that its paths belong to D, the space of all right-continuous left-limited

functions from R+ into E. Let A satisfy the differential equation (2.3), but with

the initial condition A(O) unspecified. It follows, then, that the pair (X, A) is a

temporally homogeneous Markov process with state space E x Rk. As is usual

in the theory of Markov processes, we will write

Pa{.}=P{'IX() =x,A(o) = a}, x E E, a C R+,

and will write E~ a for the corresponding expectation operator. Note that pa

does not put any conditions on the vector S of standard exponentials, except

that S is assumed to be independent of I*, that is, of the process (X, A).

The lifelengths Ti are still defined by (2.1), which implies that some of the T

can be 0 with a strictly positive probability. However, if it is given that Ti > 0,
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its probability law is the same as that of

(5.7) Ui = inf{t : A,(t) - A,(0) > Si}, i G K,

which fact follows from the independence of S from A and the memorylessness

of exponential variables. The following is a precise version of this circle of ideas.

Here, and below, for I c K and v E Rk we define vi E R+ to be the vector

whose i-entry is vi or 0 according as i C I -,r not.

(5.8) LEMMA. Let f be a positive Borel function on Rk and put

(5.9) g(x,a,I) = EXaf(T) I Si > ai for iE Iand Si < ai for i E K- I],

where X E E, a C Rk , and I C K. Then,

(5.10) g(x,a,I) = Eaf(Ul).

Proof. Under pxa we have A(0) = a. Thus, on {S, 5 ai} we have T, 0

almost surely, and (5.9) becomes

(5.11) g(x,a,I) = Eza[f(TI) I S > a,, i E I].

On the other hand, on {Si > ai}, we have

Ti = inf{t : Ai(t) > Si} = inf{t : Ai(t) - Ai(O) > S}

where Si = Si - ai since Ai(O) = ai under p:a. By the independence of S from

(X, A), and since Si is exponential, S, = Si - a, has the standard exponential

distribution as its conditional distribution on {Si > ai}. It follows that the

conditional distribution of TI, given {Si > a,, i E I}, under pza coincides with

the distribution of U1 under pZa. Hence, the right sides of (5.10) and (5.11) are

the same.
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(5.12) LEMMA. Let f and g be as in Lemma (5.8). Let/i be the standard

exponential distribution on R', that is, ii(ds) = exp(-s 1 -. sk)ds, ... dsk.

Then.

(5.13) E-f (T) = / ji(ds)g(x,a,I,,) = h(x,a)

where I, = {i E K :si > ai}.

Proof. It is immediate from Lemma (5.8) by unconditioning.

The proof of the next lemma follows from the Markov property of (X, A).

Here,

(5.14) R(t) {iEK: Ti > t},

is the set of components remaining alive at t.

(5.15) LEMMA. Let X be a temporally homogeneous Markov process. Let

f,g, and h be related by (5.9) and (5.13). Then

(5.15) Elf(OtT) I tj = g(X(t), A(t), R(t)),

(5.16) E[f(OtT) I ] h(X(t), A(t)).

Increasing hazard rates

(5.17) THEOREM. Let X be a temporally hoinogeneous Markov process

with state space E = R'. Suppose that

a) r(x, a) increases in x and in a and is continuous,

b) X is stochastically monotone
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c) the paths of X belong to b(R+,R n ) and are increasing.

Then, T has the (7t)-MIHR and (gt)-MIHR properties.

Proof. i) Let f be an increasing function on Rk and let g and h be defined

by (5.9) and (5.13). To show that (5.13) holds with Mt = 7t or t,t > 0, it

is sufficient to show that (5.15) and (5.16) are decreasing in t. Since X and A

are increasing processes (the assertion on X is via the assumption (c)) and R

is decreasing, this amounts to showing that g and h are decreasing in their first

two arguments and g is increasing in its last argument.

ii) It is easy to see that g(x,a,I) increases as I increases: if I C J then

U1 < Uj and f(U) <_ f(Uj).

iii) Fix a and I. Since x - r(x,a) is increasing, the random vector U, is a

decreasing functional of X (by (3.13)). By the assumed stochastic monotonicity

of X, this implies that g(x, a, I) decreases in x. Further, in view of (5.13), h(x, a)

decreases in x.

iv) Fix x and I. Let a < a, and let A and A be the solutions of (2.3) starting

from a and a respectively. As before in Theorem (3.1), using the assumption

that r(x, a) is increasing in a, we see that A < A. This implies that

(5.18) d A(t) = r(X(t),A(t)) !< r(X(t), A(t)) = -A(t).
dt dt

Integrating over (0,t] we see that A(t) - A(O) < A(t) - A3,(O). Thus, in view of

the definition (5.7) of U, we have U > & where & corresponds to A as U does

to A. It follows that f(Ul) _ f(&I) and, since the law of U under P"' is the

same as that 6r under pza, we have that g(x, a, I) >_ g(x, a, I). Hence, g(x, a, I)

decreases in a.
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Finally, fix x and let a < a. Consider the formula (5.13) for h. For any s E k+,

I.= {i : s, > a) D {i : si > hi} = Ia, and hence, g(x,a, I..) > g(x,a, Ia). It

follows from (5.13) that h(z,a) > h(x,a), that is, h(z,a) decreases in a. 1i

Note that the conditions of Theorem (5.17) imply the conditions of Theorem

(4.1) [See the discussion following the proof of Theorem (4.1)]. This is not

surprising: Using ideas such as in Norros (1985) it can be shown that if T has

the (t)-MIhR property then Tl,..., Tk are associated.

In the preceding proof we had the assumption that the paths of X are increas-

ing. For proving the generally weaker property MNBU, we may replace it with

something weaker.

(5.19) THEOREM. Let X be a temporally homogeneous Markov process

with state space E = R ' . Suppose that the condition (a) and (b) of Theorem

(5.17) hold, and that

(c') X(O) _< X(t) almost surely for each t and the paths of X belong to

b(R+ ,R').

Then, T has the properties (.t)-MNBU and (.gt)-MNBU.

Proof. Here we have Yo = go = a(X(O)A(O)). And, by the computations of

Lemma (5.8),

E[f(T) I go] = g(X(O),A(O),K)

So, we need to show (by (c')) that

g(X(O),A(O),K) g(X(t),A(t),R(t))

and that

h(X(O),A(O)) _ h(X(t),A(t)).
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But these follow from the proof of Theorem (5.17).

Theorem (5.19) applies to "new" components by setting A(O) = 0 with prob-

ability one.

Notc that (c') holds whenevcr E = R' and P{X(O) = O} 1.
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